Cantor-Lebesgue function (uniformly continuous, not Lipschitz)

Construction of Cantor set. Let I = [0, 1]. The first stage of the construction is to subdivide [0, 1]into thirds and remove the interior of the middle third; that is remove the open interval $(\frac{1}{3}, \frac{2}{3})$. Each successive step of the construction is essentially the same. Thus, at the second stage, we subdivide each of the remaining two intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$ into thirds and remove the interiors, $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9},\frac{8}{9})$, of the middle thirds. We continue the construction for each of the remaining intervals. The sets removed in the first three successive stages are indicated below by darkened intervals:

For each $k = 1, 2, ..., let C_k$ denote the union of the interval left at the kth stage. The set $C = \bigcap C_k$

is called the **Cantor set.** Note that each C_k consists of 2^k closed interval, each of length 3^{-k} , and that C contains the endpoints of all these intervals. Any point of C belongs to an interval in C_k for every k and is therefore a limit point of the endpoints of the intervals, e.g. $\frac{2}{3} = \frac{23^{k-1}}{3^k} = \lim_{k \to \infty} \frac{23^{k-1}+1}{3^k}$ and note that $\frac{23^{k-1}+1}{3^k}$ is an endpoint of an interval in C_k . Let $D_k = I \setminus C_k$. Then D_k consists of the $2^k - 1$ open intervals I_i^k (ordered from left to right) removed in the first k stages of construction of the Cantor set. Let f_k be the continuous function on [0, 1] defined by $f_k(x) =$

$$\begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x = 1 \\ j2^{-k} & \text{if } x \in I_j^k, \ j = 1, \dots, 2^k - 1, \end{cases}$$
 Note that

linear on each interval of C_k

(1) each f_k is monotone increasing, (2) $\{I_j^k\}_{j=1}^{2^k-1} \subseteq \{I_m^l\}_{m=1}^{2^l-1}$ whenever $k \leq l$, we have $f_{k+1} = f_k$ on I_j^k , $j = 1, \ldots, 2^k - 1$, (3) $|f_k - f_{k+1}| < 2^{-k}$ for all k.

Hence, $\sum (f_k - f_{k+1})$ converges uniformly on [0, 1], and therefore, $\{f_k\}$ converges uniformly on [0, 1]. Let $f = \lim_{k \to \infty} f_k$. Then f(0) = 0, f(1) = 1, f is monotone increasing and (uniformly) continuous on [0, 1], and f is constant on every interval removed in constructing C. (Alternative argument: By (3) and the Azelà-Ascoli Theorem, the sequence $\{f_k\}$ is a Cauchy sequence and it converges uniformly to a continuous function f.) This f is called the **Cantor-Lebesgue** function. Note that

$$\begin{aligned} (1) & \frac{2}{3} = \frac{23^{k-1}}{3^k}, \ \frac{23^{k-1}+1}{3^k} \in C_k \text{ for all } k, \\ (2) & f(\frac{23^{k-1}}{3^k}) = f(\frac{2}{3}) = \frac{1}{2}, \text{ and } f(\frac{23^{k-1}+1}{3^k}) = \frac{1}{2} + \frac{1}{2^k}. \\ \text{Thus, we have} \\ & \frac{f(\frac{23^{k-1}+1}{3^k}) - f(\frac{2}{3})}{\frac{23^{k-1}+1}{3^k} - \frac{2}{3}} = \frac{\frac{1}{2} + \frac{1}{2^k} - \frac{1}{2}}{\frac{23^{k-1}+1}{3^k} - \frac{23^{k-1}}{3^k}} = \frac{3^k}{2^k} \to \infty \text{ as } k \text{ goes to } \infty \end{aligned}$$

which implies that f is **Not Lipschitz** on [0, 1].

Advanced Calculus

May 23, 2011

