$\underline{\text { Cantor-Lebesgue function (uniformly continuous, not Lipschitz) }}$
Construction of Cantor set. Let $I=[0,1]$. The first stage of the construction is to subdivide $[0,1]$ into thirds and remove the interior of the middle third; that is remove the open interval $\left(\frac{1}{3}, \frac{2}{3}\right)$. Each successive step of the construction is essentially the same. Thus, at the second stage, we subdivide each of the remaining two intervals $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ into thirds and remove the interiors, $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(\frac{7}{9}, \frac{8}{9}\right)$, of the middle thirds. We continue the construction for each of the remaining intervals. The sets removed in the first three successive stages are indicated below by darkened intervals:

For each $k=1,2, \ldots$, let C_{k} denote the union of the interval left at the k th stage. The set $C=\bigcap_{k=1}^{\infty} C_{k}$ is called the Cantor set. Note that each C_{k} consists of 2^{k} closed interval, each of length 3^{-k}, and that C contains the endpoints of all these intervals. Any point of C belongs to an interval in C_{k} for every k and is therefore a limit point of the endpoints of the intervals, e.g. $\frac{2}{3}=\frac{23^{k-1}}{3^{k}}=$ $\lim _{k \rightarrow \infty} \frac{23^{k-1}+1}{3^{k}}$ and note that $\frac{23^{k-1}+1}{3^{k}}$ is an endpoint of an interval in C_{k}. Let $D_{k}=I \backslash C_{k}$. Then D_{k} consists of the $2^{k}-1$ open intervals I_{j}^{k} (ordered from left to right) removed in the first k stages of construction of the Cantor set. Let f_{k} be the continuous function on $[0,1]$ defined by $f_{k}(x)=$ $\left\{\begin{array}{ll}0 & \text { if } x=0 \\ 1 & \text { if } x=1 \\ j 2^{-k} & \text { if } x \in I_{j}^{k}, j=1, \ldots, 2^{k}-1, \\ \text { linear on each interval of } C_{k} & \end{array}\right.$ Note that
(1) each f_{k} is monotone increasing,
(2) $\left\{I_{j}^{k}\right\}_{j=1}^{2^{k}-1} \subseteq\left\{I_{m}^{l}\right\}_{m=1}^{2^{l}-1}$ whenever $k \leq l$, we have $f_{k+1}=f_{k}$ on $I_{j}^{k}, j=1, \ldots, 2^{k}-1$,
(3) $\left|f_{k}-f_{k+1}\right|<2^{-k}$ for all k.

Hence, $\sum\left(f_{k}-f_{k+1}\right)$ converges uniformly on $[0,1]$, and therefore, $\left\{f_{k}\right\}$ converges uniformly on $[0,1]$. Let $f=\lim _{k \rightarrow \infty} f_{k}$. Then $f(0)=0, f(1)=1, f$ is monotone increasing and (uniformly) continuous on $[0,1]$, and f is constant on every interval removed in constructing C. (Alternative argument: By (3) and the Azelà-Ascoli Theorem, the sequence $\left\{f_{k}\right\}$ is a Cauchy sequence and it converges uniformly to a continuous function f.) This f is called the Cantor-Lebesgue function.
Note that
(1) $\frac{2}{3}=\frac{23^{k-1}}{3^{k}}, \frac{23^{k-1}+1}{3^{k}} \in C_{k}$ for all k,
(2) $f\left(\frac{23^{k-1}}{3^{k}}\right)=f\left(\frac{2}{3}\right)=\frac{1}{2}$, and $f\left(\frac{23^{k-1}+1}{3^{k}}\right)=\frac{1}{2}+\frac{1}{2^{k}}$.

Thus, we have

$$
\frac{f\left(\frac{23^{k-1}+1}{3^{k}}\right)-f\left(\frac{2}{3}\right)}{\frac{23^{k-1}+1}{3^{k}}-\frac{2}{3}}=\frac{\frac{1}{2}+\frac{1}{2^{k}}-\frac{1}{2}}{\frac{23^{k-1}+1}{3^{k}}-\frac{23^{k-1}}{3^{k}}}=\frac{3^{k}}{2^{k}} \rightarrow \infty \text { as } k \text { goes to } \infty
$$

which implies that f is Not Lipschitz on $[0,1]$.

